Зарядное устройство из бп компьютера для автомобильного аккумулятора: как сделать зарядку

Зарядное устройство из компьютерного блока питания

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт амперметра к зарядному устройству

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

494 comments on “ Зарядное устройство из компьютерного блока питания ”

Добрый день Сергей. Не затруднит-ли Вас оказать мне помощь в решении такой задачи. Из китайских модулей собран БП с регулировкой V 1,5-33 вольт и регулировкой А 0-6 ампер. БП может работать в 2-х режимах 1) с постоянным выходом, 2) с циклическим выходом — 0 (пауза) или V (установленное в постоянном режиме). Цикличность(длительность) каждого состояния регулируется в пределах от 0,01 сек до 99 мин. Режим цикличности я использую для десульфатации АКБ — заряд-разряд (автомобильная лампа). Схема переключения (заряд-разряд) реализована на реле, которое в процессе эксплуатация показало свою не надежность. Возможно-ли реализовать электронную схему такого переключения? Заранее признателен и всяческих успехов в наступившем году.

Добрый вечер Геннадий! Сделать на тиристорах не получится потому, что у вас реле стоит на переключение, а тиристоры могут только включать и отключать нагрузку. В магазинах продаются твердотельные реле, они не имеет механических контактов, а использует электрические и оптические свойства полупроводников. Но стоят очень дорого. Проще заменить ваше реле на более мощное например автомобильное пяти контактное на 30А или на 100А такое никогда не сгорит.

Огромное спасибо Сергей. Тиристоры я даже не рассматривал. Возможно-ли использовать транзисторный (биполярный или полевой)? Для этой цели поставить диодную развязку между БП и АКБ с подключенным ключом с нагрузкой, а управление ключом осуществлять напряжением с того-же БП (0 или Uвых БП). Вопрос «как реализовать такой ключ?». При Uвых=0,5в(логический 0) ключ открыт и лампа горит и наоборот, быстродействие значения не имеет. Спасибо, всех благ.

На тиристорах лучше будет. На транзисторах падение напряжения большое. Хотя бы примерную схему вашего БП посмотреть.

Сергей.Как подписаться на ваш сайт?

Николай, подписаться можно на RSS канал по ссылке https://sdelaitak24.ru/feed/

Сергей по данной ссылке подписаться не удаётся-открывается страница,ана ней только текст и всё.

Николай нужна специальная программа одна из этих на выбор Feedreader 3.08, FleetNews 1.6, infoscape 1.7, Noopod 3.0.1.0, QuickRSS 2.0, RSS Aggregator 2.6 вставляете ссылку в программу и все новые самоделки с моего сайта будут автоматически отображаться в программе.

Здравствуй Сергей.Сколько перелопатил сайтов по переделке БП от ПК и всё не нравилось-слишком много делов (а я уже старенький)-много деталей выпаивать.И вот наконец удача-зашёл к тебе на сайт.Минимум работы,а результат тот же,что и у других. У меня блок-ATX MEC320 350W.На TL494. Буду его делать. Есть блок питания Повер 510-на
UC3843 и супервизор WT 7527.Но этот Повер 510-наверно не потяну .

Добрый вечер Николай! Будут вопросы с блоком на TL494, пишите я вам помогу.

Сергей .Добрый день.Если отрезать дорожку к 4 ой ножке TL-494 ,а от 4 ой ножки перемычка на GND.Нужно ли в таком случае перерезать питание +5 вольт к 13,14,15 ножкам TL-494.Ведь перерезав дорожку к 4ой ноге микросхемы и закоротив на землю мы уже отключаем защиту микросхемы?

Добрый вечер Николай! Достаточно отключить защиту одним удобным для вас способом. Например если отрезали дорожку от 4 ноги, а потом 4 ногу соединили с GND, то больше ничего делать не надо, защита будет отключена.

Спасибо.Понял,но с переделкой придётся мне потерпеть.Блок питания поставил к газовой колонке-дежурным питанием.Как всегда не вовремя сели батарейки на праздники негде было купить.Буду искать ещё АТХ блок.

Зарядное устройство из блока питания компьютера

Дата: 29.09.2015 // 0 Комментариев

Наверняка каждому автолюбителю приходилось собирать зарядное устройство для автомобиля своими руками. Существует масса разнообразных подходов, начиная от простых трансформаторных схем, заканчивая импульсными схемами с автоматической регулировкой. Зарядное устройство из блока питания компьютера, как раз занимает золотую середину. Оно получается за копеечную цену, а его параметры отлично справляются с зарядкой автомобильных АКБ. Сегодня мы вам расскажем, как за полчаса можно собрать зарядное устройство из компьютерного блока питания ATX. Поехали!

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд.

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т.к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.

Мы его составили из двух 100 кОм и 22 кОм.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя.

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

Автомобильное зарядное устройство из компьютерного БП АТХ

Как известно, при кратковременных поездках в городе автомобильный аккумулятор не успевает заряжаться, постоянный недозаряд приводит к сульфатации пластин и к сокращению службы самого аккумулятора. При эксплуатации авто только в городском режиме советуют раз в 3-4 месяца полностью заряжать автомобильный аккумулятор штатным зарядным устройством. Да вот беда – нормальное зарядное есть не у всех, денег на него жалко, а заряжать аккумулятор желательно регулярно. Для тех, у кого нет лишних 30-50 баксов на автомобильную зарядку от сети, а иметь оную уж очень хочется, и предназначена эта статья.

Очень неплохую вещь можно сделать из обычного компьютерного блока питания АТХ. Компьютерный блок питания ваще шикарная штука, ибо предназначен для того, чтобы молотить круглосуточно, запитывая материнку, процессор, винчестер, да еще и выдавать при этом довольно солидные токи. В самих компьютерах БП периодически мрут, ибо сделаны в большинстве своем китайцами, а эти ребята привыкли экономить на всем – занижать параметры конденсаторов, ставить резисторы меньшей мощности, и вообще за это им огромное спасибо, ибо благодаря их стараниям у меня, к примеру, нет недостатка в компьютерных блоках питания для экспериментов.

Достать компьютерный БП проще простого – нужно пойти в любой компьютерный магазин, у которого есть свой сервисный центр, и купить за очень недорого «дохлый» блок питания. Как правило у любого сервисного центра есть здоровенная коробка этих самых БП, ибо чинить их экономически невыгодно – компьютерные магазины, вообще-то зарабатывают не на ремонте БП, а на их продаже Так что если подойти к директору, прикинуться бедным студентом, рассказать жалобную историю, что мол детали дорогие, а денег нет, то думаю за каких-то десять баксов можно притащить домой солидную кучу блоков питания.

Скажу сразу – не всякий блок питания подойдет для переделки. Внутри блока питания стоит микросхема ШИМ-контроллера, которая управляет полумостовым преобразователем. Нас интересует блок питания с установленным ШИМ TL 494 (аналоги KA7500, DBL494, M5T494 и тому подобное). На этой микросхеме с небольшими изменениями можно получить не только автомобильное зарядное устройство, но и полноценный лабораторный блок питания с регулируемым стабилизированным напряжением и ограничением тока.

Из блоков питания с установленными ШИМ SG6105 , АТ2003 и т.д. получить блок питания с регулируемыми параметрами не получится, максимум что из него можно выжать – автомобильное зарядное 14.2-14.8В/3-6 А.

В этой статье мы рассмотрим переделку БП на самой распространенной ШИМ TL 494. Структурная схема ШИМ показана на рисунке:

“Выводы 1 и 2 – неинвертирующего и инвертирующего входов усилителя ошибки 1; вывод 3 – вход «обратной связи»; вывод 4 – вход регулировки «мертвого времени» (время, в течение которого закрыты оба выходных транзистора, причем независимо от величины тока нагрузки); выводы 5 и 6 – для подключения внешних элементов ко встроенному генератору пилообразного напряжения; вывод 7 – общий; выводы 8 и 9 – коллектор и эмиттер первого транзистора; выводы 11 и 10 – коллектор и эмиттер второго транзистора; вывод 12 – питание; вывод 13 – выбор режима работы (возможна работа в одно- или двухтактном режиме: если на этом выводе присутствует логическая «1″ (+2,4…+5 В), то транзисторы открываются поочередно (двухтактный режим работы); если на выводе будет «О» (0…0.4 В), то это однотактный режим, при этом транзисторы могут быть включены параллельно для увеличения выходного тока); вывод 14 – выход опорного напряжения (+5 В); выводы 15 и 16 – неинвертирующий и инвертирующий входы усилителя ошибки 2.
ШИМ-контроллер работает на фиксированной частоте и содержит встроенный генератор пилообразного напряжения, который требует для установки частоты всего два внешних компонента: резистора Rt и конденсатора Ct. При этом частота генерации будет равна f=1,1/RtCt.”

После того, как БП принесли домой, разобрали, прошлись кисточкой и пропылесосили, нужно убедиться, что входные цепи, а также источник питания дежурного режима (так называемая дежурка) работают и выдают на ШИМ питание.

Для начала проверяем работоспособность источника дежурного питания. Дежурка работает всегда, когда на блок питания подано 220В и включен тублер. Она выдает два напряжения – одно на питание ШИМ, другое +5Vsb (Standbye). Сигнал Standbye – фиолетовый провод большого разъема питания, 9 контакт.

При включенном в сеть БП на 9 контакте должно быть 5В. Если нет, ищем неисправность в цепях дежурки. Если есть – проверяем наличие питания на выводе 12 ШИМ. Микросхема запускается при подаче на вывод 12 напряжения от 7 до 41В (в среднем дежурка выдает 12-15В).

Схема дежурного источника питания выглядит примерно так:

Дежурка выполнена по схеме однотактного преобразователя с насыщающимся трансформатором. Чаще всего высыхают электролитические конденсаторы, теряют емкость конденсаторы обвязки. Прозваниваем транзистор, диоды, первичную и вторичную обмотки трансформатора на предмет КЗ.

Если дежурка работает, а ШИМ не запускается, проверяем работоспособность ШИМ-преобразователя. Для этого необходимо иметь стабилизированный источник питания +12В. Подключаем источник к выводу 12 ШИМ, вывод 4 закорачиваем на землю. При наличии осциллографа можно стать на ноги 8, 11 и посмотреть сигналы на транзисторы раскачки, а на ноге 5 можно наблюдать «пилу» работающего внутреннего генератора. Если осциллографа нет, то мультиметром проверяем наличие +5В на выводе 14 – если есть, то внутренний источник опорного напряжения работает.

Очень часто случается, что при закорачивании вывода 4 ШИМ на землю БП АТХ начинает работать. В этом случае причина неисправности кроется в цепях защиты от перегрузок и цепях формирования служебных сигналов. Так как в дальнейшем эти цепи защиты нам будут не нужны, и от +3.3/+5В мы откажемся вообще, проверка цепей защиты здесь рассматриваться не будет. Должен заметить, что включение БП АТХ происходит при замыкании сигнала PS_ON на землю (зеленый провод, 16 контакт). Так как этот сигнал относится к цепям формирования служебных сигналов, он нас не интересует – мы запустим БП без него.

Наша основная задача – запустить блок питания и получить на выходе +12В, с которым мы и будем в дальнейшем работать. Простейшая схема компьютерного блока питания на ШИМ TL494 (аналог КА7500) показана на рисунке ниже:

Схема БП состоит из следующих блоков:

1. Сетевой фильтр и выпрямитель.

2. Схема измерений перенапряжений, она же схема защиты и формирования служебных сигналов.

3. Дежурный источник питания.

4. Усилитель мощности.

5. Выпрямитель для напряжения +12В вторичной цепи источника питания.

6. Схема промежуточного усилителя.

Микросхему ШИМ легко найти невооруженным взглядом

Допустим ШИМ работает, но на выходе напряжений нет. Проверяем цепи усилителя мощности и силовые транзисторы.

Все осциллограммы снимать относительно эмиттера. Основные неисправности – обрывы резисторов в цепях базы, потеря емкости конденсаторами или их пробой, межвитковое КЗ в обмотках трансформатора, пробой высоковольтных транзисторов.

Итак, наша основная задача – получить на выходе +12В. Условно будем полагать, что с этой задачей мы успешно справились, ибо разбор конструкции БП АТХ и принципы его ремонта не входит в нашу первоочередную задачу. Выходная часть с выпрямителем и фильтрами питания сделаны по примерно одной и той же схеме:

Так как напряжения +3.3В, +5В, – 5В и -12В нам не нужны, можно смело выпаивать все компоненты на выходе, отвечающие за эти напряжения. Оставляем выходной дроссель, электролитический конденсатор в цепи +12В заменяем на 2200 мкФ 50В (изначально там стоит конденсатор, расчитанный на рабочее напряжение 16В, в случае переделки БП под выходное напряжение 25В он взорвется). Также не лишним будет заменить сборку диодов Шоттки в цепи +12В на другую, с большим прямым током. Можно заменить эту сборку на ту, которая стояла в цепи +5В или поставить сборку диодов Шоттки на более высокий ток, скажем, 10TQ045 с прямым током 10А или MBR1545CT с прямым током 15А. Заодно выпаиваем со схемы весь жгут проводов – он нам больше не понадобится.

После выпаивания запасных компонентов должно получиться примерно следующее:

Не бойтесь выпаивать все лишнее – для запуска ШИМ TL494 нужно всего 4 сопротивления и один конденсатор (не считая пары переменных резисторов). Они уже есть на схеме, даже если Вы выпаяете лишнее, потом ориентируясь по печатным проводникам, можно будет вернуть нужные компоненты (3 сопротивления и 1 емкость) на место. Нижняя микросхема LM339 – счетверенный компаратор, на котором собрана схема защиты, также не нужна. Ее можно смело выпаивать или выкусывать, я обломался

На плате оставляем только дроссель (ниже радиатора), и заменяем конденсатор в цепи +12В на 2200 мкФ 35В – изначально там стоит конденсатор на напряжение 16В.

При переделке компьютерного БП в лабораторный источник питания я опирался вот на эту схему, называемую в народе «схема итальянца» (кликабельно для увеличения):

Или же можно воспользоваться схемой попроще:

Здесь показана минимальная обвязка ШИМ TL494 для того, чтобы микросхема заработала. Так как раньше блок питания уже как-то работал, скорей всего эта обвязка уже присутствует в схеме, нужно только изменить подключение выводов 1, 2, 4, 15 и 16. На контакт 12 подается напряжение с дежурного источника питания. Контакт 4 садится на землю. Можно проследить дорожку и выпаять диод, через который на контакт 4 подается сигнал ошибки со схемы защиты. Схема защиты с сигналом PS_ON нам уже тоже не нужна, поэтому ее можно смело выковыривать из платы, вместо нее мы соберем схему ограничения тока.

* Прослеживаем по дорожкам выводы 15 и 16, отпаиваем от них компоненты и соединяем согласно схеме.

* Прослеживаем по дорожкам распайку выводов 1, 2, отпаиваем от них компоненты и соединяем согласно схеме.

Кроме этого, нам понадобится два переменных резистора нужного номинала, и шунт 0.1-0.0.1. Шунт я сделал с двух «керамических» сопротивлений номиналом 0.2 Ом, соединив их параллельно. На самом деле это не керамические сопротивления, а обычные резисторы, зацементированные в керамику, поэтому при нагреве их номинал «уплывает», желательно в качестве шунта применять что-то типа старых советских проволочных резисторов С5-16. Вот что вышло в итоге:

Фактически для переделки БП АТХ в лабораторный источник питания или зарядное устройство нужно два переменных резистора и шунт на 0.1-0.01 Ом. Ну и конечно мало-мальские познания в электронике и большое желание замутить что-то такое на зависть всем пацанам из соседних гаражей . Что в танке главное, знаете? Правильно, плюс небольшая внимательность.

В принципе уже после этого напряжение на выходе можно менять в пределах от 2.5 до 25В, а ограничение тока можно выставлять от 0.5 до 15 А. Выставив однажды сопротивлением 14.2-14.6В и ограничив ток в пределах 0.1С от емкости заряжаемой батареи (для батареи 50А*ч ток заряда должен быть равен 5А), мы получим полноценное зарядное устройство. Так как схема БП АТХ является по-сути стабилизатором напряжения, то она будет поддерживать заданное раннее напряжение, а вот ток по мере заряда аккумулятора будет падать. И это является очень большим преимуществом этого зарядного устройства по сравнению с остальными зарядными, у которых стабилизированный ток заряда – нет риска что аккумулятор «закипит». Аккумулятор можно бесконечно долго держать подключенным к этому зарядному устройству – по мере набора емкости ток заряда будет снижаться вплоть до ноля, фактически переходя в заряд «капельным режимом», то есть поддерживая емкость аккумулятора неограниченное время.

Но так как такое зарядное устройство будет использоваться раз в два-три месяца, если не раз в год, а остальное время оно просто будет валяться в гараже, есть очень большой соблазн потратить еще один день, и сделать из него полноценный лабораторный блок питания. Понадобится только две измерительные головки – вольтметр и амперметр. Можно прикрутить китайский блок 2 в 1, амперметр + вольтметр. Либо для пущей убедительности возможна установка аналоговых вольтметра и амперметра. Амперметр нужен обязательно с шунтом на тот предел, который указан на шкале. Иначе замучаетесь подбирать отрезок провода необходимого сопротивления. В моем случае манганиновый шунт уже встроен в амперметр.

Вырезав из текстолита лицевую панель, профрезеровав отверстия под амперметр, вольтметр, регуляторы и прочее, я собрал все воедино.

Можно пойти другим путем, и сделать переднюю панель скажем из нержавейки, порезав ее лазером.

В результате получился полноценный блок питания с пределами 25В/10А (ток фактически больше, порядка 15А)

Работа блока на нагрузку в виде автомобильной лампы.

Вид блока со стрелочными индикаторами

Штатный вентилятор нужно подключить к бывшему выходу +12В, развернув его так, чтобы он дул внутрь блока, охлаждая радиаторы силовых транзисторов и выходных диодов. У меня заодно он обдувает и шунт. При этом чем выше напряжение, тем больше скорость вращения вентилятора. Не пытайтесь изменить направление вращения, изменяя полярность питания – внутри вентилятора стоит специальная микросхема, она скорей всего сдохнет

ВНИМАНИЕ! Схема фактически не содержит защиты от короткого замыкания, вместо нее на одном из компараторов ошибки ШИМ TL494 собрано ограничение выходного тока. Это значит, что если замкнуть накоротко выходы источника питания, ток короткого замыкания в цепях будет равен лишь выставленному ранее ограничению тока! Блок питания достаточно мощный, если ограничение тока будет выставлено на максимум, он будет «вдувать» в нагрузку (которая по сути шунт 0.1 Ом) максимальный ток. Помните об этом, если Вы не хотите, чтобы из вашего блока ушел волшебный дым, на котором работает вся электроника.

Для избежания подобных казусов нагрузка в моем случае подключается через предохранитель на 15А. Есть хотя бы один шанс из ста что при КЗ предохранитель успеет сгореть ранше, чем сгорит что-то в схеме. К сожалению, происходит ровно наоборот – схема вылетает, защитив собой предохранитель

ВНИМАНИЕ ШТРИХ! При подключении к аккумулятору строго соблюдать полярность! В противном случае все тот же волшебный дым покинет какой-то компонент схемы, и он больше никогда не будет работать.

Порядок зарядки аккумулятора. На холостом ходу выставить регулятором тока минимальное ограничение тока (крайнее левое или крайнее правое положение сопротивления R3 согласно вышеприведенной схеме, зависящее (положение) от распайки резистора), регулятором напряжения выставить напряжение 14.2-14.6В для обычных аккумуляторов и 14.8-15.6 для кальциевых. Отключить источник питания от сети. Подключить аккумулятор, соблюдая полярность. Включить источник питания и регулятором тока выставить нужный ток заряда.

При этом напряжение немного упадет до какого-то значения, которое зависит от внутреннего сопротивления аккумулятора, но стабилизатор тока будет держать нужный ток. По мере набора аккумулятором емкости ток заряда будет падать, а напряжение вернется до установленного ранее значения.

Во избежании взрыва подключать и отключать аккумулятор только при выключенном источнике питания.

Примечание. Длительная нагрузка (порядка 10 часов) источника питания двумя параллельными автомобильными лампами 12В 55Вт при напряжении 14.6В и суммарном токе потребления почти 8А показало, что при работающем обдуве какого-то сильно критичного нагрева компонентов внутри блока питания нет.

Выводы: зарядное устройство для аккумуляторов, сделанное на базе блока питания АТХ обладает следующими преимуществами:

1. Фантастическая живучесть и работоспособность. Компьютерные импульсные блоки питания с принудительным охлаждением имеют КПД порядка 80-85%, диапазон входного напряжения 160-240В, время наработки на отказ порядка 50 тыс. часов. Другими словами, блок питания предназначен для того, чтобы сутками молотить включенным. Так как используется только напряжение +12в, то выходной трансформатор нагружен даже меньше, чем если бы использовались также +5В и +3.3В, ибо их обмотки намотаны на одном сердечнике выходного трансформатора.

2. Стабилизация выходного напряжения в пределах ±5% для значения +12В

3. Ограничение тока, из чего следует, что зарядное такого типа смело можно применять для заряда необслуживаемых гелиевых аккумуляторов – риск «закипятить» аккумулятор отсутствует. Последний возьмет столько тока, сколько ему нужно.

4. Возможность заряжать аккумулятор не отключая его от автомобиля.

5. Полноценный блок питания с широкими пределами регулирования для решения повседневных задач.

Недостаток – время полного заряда аккумулятора большой емкости вследствии уменьшения тока заряда по экспоненте может оказаться несколько больше ожидаемого. Это компенсируется невозможностью довести аккумулятор до «кипения», если бы заряжать его постоянным стабильным током.

Communities › Сделай Сам › Blog › Зарядное устройство из компьютерного блока питания.

Зарядное устройство зачастую нужно для простой подзарядки аккума, ну в крайнем случае зарядить севший в мороз аккумулятор. Потому не обязательно, чтобы он был навороченный и имел кучу режимов работы. В большинстве случаев достаточно просто источника питания постоянного тока с напряжением ближе к 14 В, в идеале 14,4 В.

Мы с дедом сделали такой аппарат, взяв за основу старый трансформатор, который в итоге сгорел (сделал, блин, доброе дело, зарядил знакомому аккумулятор)…

Вопрос о собственном зарядном стал остро, восстановить предыдущей возможности нет, потому решено сделать новый из старого компьютерного БП мощностью 300 Ватт.

Вот что в итоге получилось:

Инструкций на эту тему на просторах всемирной паутины довольно много, вариантов тоже, от самых простых до практически полной переделки. Первые варианты меня устраивали, ведь достаточно просто повысить напряжение на выходе 12 В до 14,4 Вольта, да вот не всё было гладко.

Зачастую в импульсных блоках питания (ИБП) используют ШИМ TL494 или его аналоги (DBL494, в моём случае KA7500B). Я выбрал “бескровный” вариант: на вход 1 параллельно подключено несколько резисторов, заменил резистор 320 кОм на резистор в 22 кОм (по номиналу 24 кОм). Ниже приведу схему аналога, там этот резистор под индексом R88.

Резисторы подбирал, стараясь максимально повысить напряжение. При слишком маленьком номинале срабатывает защита и БП не запускается. У меня получилось повысить напряжение до 13,5 Вольт. Можно и выше, но нужно убирать защиты, а это значит — искать и выпаивать кучу деталей и убирать кучу цепей. Имхо, для моей задачи слишком сложно, проще, наверное, новый собрать…

Ну, а дальше дело техники: выпаиваем все провода (нафиг нужна эта косичка), оставляем “огрызок” провода, который отвечает за запуск БП. В моём случае это зелёный провод. Не помню, на какие клеммы разъёма он приходит, ну, такой информации тоже полно. Для работы БП он должен быть постоянно замкнут с общим (чёрным) проводом. Можно поставить тумблер или выключатель, я пока подключил напрямую, потом найду красивую кнопку или переключатель. Был у меня переключатель 110/220 В, я его убрал, для включения БП он неудобный. Там сейчас технологическое отверстие. Кстати, для работы в цепях 220 В этот выключатель разомкнут, потому его можно бескровно выкинуть из схемы.

Припаиваем провода подходящего сечения на освободившиеся контакты (общий и +12 В) вместо косичек, и блок питания можно использовать. В принципе, необязательно выпаивать, просто скрутки я не очень люблю, чем меньше разрывов цепи, тем лучше.

Но, без циферок, обозначающих ток, как то скучновато. Потому решил поставить одно интересное изделие из поднебесной, ныне довольно популярное. Правда с подключением получились интересности…

5 проводов, 2 толстых на амперметр, три тонких — вольтметр и питание. Нюанс номер раз: у этой игрушки автономное питание. Я не парясь, подключил на выход ИБП 5 Вольт (который, кстати, стал 5,6 Вольт). Если мне не изменяет память, то красный +, черный — общий. Не доверяю таким инструкциям с цветами, как на картинке, потому проверил: черный припаиваем на общий, запускаем БП, подключаем один из оставшихся проводов к выходу 5 Вольт. Провод, при подключении которого дисплей загорится, и припаиваем. Второй вариант проверки — батарейки. Честно, не помню характеристики этой игрушки, питание там то ли до 10 Вольт, то ли до 30 Вольт, то ли в зависимости от модели. Соответственно третий провод (у меня был желтым) подключаем к выходу, на котором нам и нужно видеть напряжение, т.е. выход +12 Вольт.
Нюанс номер два: амперметр включается только в разрыв общего провода! Все нормальные амперметры работают просто в разрыве цепи, но китайцам сие, видимо, неведомо… Шучу, конечно, понимаю, что измерительные цепочки тупо завязаны на общем проводе, толстый чёрный провод в принципе выступает в качестве увеличения сечения, не более. Хотя, экспериментально, без толстого чёрного провода амперметр показывал ток в два раза больше, чем мультиметр…

Я, как наивный инженер, решил, что это нормальный амперметр, и решил его подключить в разрыв +12 В. В итоге, после кучи искр и отключения БП по защите от кз, я понял, что-то тут нечисто )) А ведь как всё красиво получалось, даже дорожку ради этого порезал, пришлось перемычки делать. Хвала великому абсолюту, что есть защита от КЗ у блока питания и я эту игрушку в процессе экспериментов не спалил. Обидно было бы: расширить отверстие под этот амперметр и сжечь его к чертям так и не запустив в эксплуатацию…

В итоге одну скрутку, хоть и с пайкой, пришлось допустить…

По характеристикам, максимальный измеряемый ток = 10 Ампер, на деле у меня пока выше 7 Ампер ток зарядки не подымался. Конечно, в идеале нужно 20 Ампер, но имеем, что имеем…

У получившегося устройства есть один минус, довольно серьёзный: у него есть защита от работы при низкой температуре, т.е. в гараже в холодное время года его постоянно держать нет смысла, либо предварительно заносить в тепло, отогревать, а потом запускать на морозе. В -25 выносил из тепла и заряжал. В -5, если стоял на холоде, работать отказывается. Такой вот парадокс. Наверное, можно эту защиту отключить, но я не знаю, как. По большому счёту минус не такой уж и серьёзный, особенно для жителей квартир…

Второй минус, менее серьёзный, более опасный: ни в коем случае не путать полярность. Иначе блок питания тупо сгорит. Нет у него этой защиты. Можно установить на выходе диодный мост, в будущем, наверное, так и сделаю…

Зарядное устройство из компьютерного блока питания

Понадобилась зарядка для аккумулятора автомобиля. Перебрав несколько вариантов, остановился на переделке блока питания компьютера. Переделывать решил по-простому. Зарядное не будет иметь регулировок, нет у меня такой задачи. В принципе можно все сделать за пару часов.

– блок питания АТХ;
– провода;
– зажимы типа «крокодил»;
– сетевой выключатель;
– фольгированный стеклотекстолит;
– пластик plexiglas;
– радиокомпоненты;
– инструменты.

Переделывать будем блок АТХ. Фирма JNC, модель LC-D300ATX.

Данный блок питания имеет на борту малоизвестную микросхему 2003. По данной микросхеме мало информации. Вроде как это ШИМ контроллер с мультивизором. Будем разбираться по схеме, о схеме далее.

Подключаться к аккумулятору буду при помощи проводов с «крокодилами». У меня уже были распаянные.

В роли сетевого выключателя у меня тумблер ТВ2-1. Выдернул со старого телевизора.

Схема блока питания довольно простая. Блок у нас на 300 Ватт, схема на 250 Ватт. Схема может отличаться номиналами некоторых компонентов.

Нужно удалить все лишние компоненты. Красным отмечено, что нужно выпаять. Желтым отмечен резистор на 13кОм, его заменим на 2.4 кОм. Вместо резистора отмеченного голубым, временно установим переменный резистор на 200 кОм. Переменный резистор, желательно поставить на 100 кОм, но у меня такого не оказалось. Пришлось долго регулировать нужное напряжение.

Главное установить в максимальное сопротивление. Так же имеются зеленые метки, что подключать к ним, расскажу позже.

Выпаиваем лишние компоненты. На схеме все разборчиво. Получается плата вот такая. Временно выпаял силовые диоды. Так же выпаял дроссель групповой стабилизации, его буду перематывать. Коричневой перемычкой замкнуты пятачки от земли и PS-ON, необходимо для запуска.

Нас интересует линия +12 вольт. Ставим на место силовой диод, я взял диод с линии 5 вольт. Диод установил без прокладки. Ножки крепления радиатора не связаны со схемой, что исключает замыкание. Установил дополнительный дроссель, на его месте стояла перемычка. Со старого дросселя групповой стабилизации смотал все обмотки, оставил старую обмотку на 12 вольт. Установил электролитический конденсатор на 1000 мкф, напряжением 35 вольт.

Переменный резистор вынес на проводах за пределы платы.

Теперь нужно изготовить плату – обманку для нашей микросхемы 2003. Обманка состоит из трех стабилизаторов на» 3.3; 5; 12 вольт. Распаял по простой схеме. Два верхних отрезка собраны на TL431, нижний на LM317.

Верхние два отрезка схемы подключаются к нижнему отрезку на 12 В. Платку, сделал по технологии «процарапывания». Делается за минут 30.

На схеме были указаны точки для подключения платы «обманки». Распаиваем согласно со схемой. На схеме отмечено зелеными точками соответственно. Плата «обманка» имеет цвета согласно напряжениям. Получилось что-то подобное.

Переменным резистором устанавливаем на выходе нужное напряжение (забыл сфотографировать). Оставляю стоп кадр. Измеряю, сопротивление резистора получилось около 11.7 кОм. Собираю из двух резисторов на 10 и 1.8 кОм. Напряжение чуть изменилось, но не значительно.

Плату «обманку» прикрутил к радиатору, через втулку и винт М3. Так же на фото слева видно, что я установил обратно нагрузочный резистор R53.

Подключил провода с зажимами «крокодилами». Установил светодиод для индикации включения. Все закрепил термо клеем. Сетевой провод пустил в разрыв через тумблер.

Первоначально не думал ставить пластину на переднюю панель, но прикрутил. Так выглядит приличней. Такое вот гаражное зарядное устройство получилось. Единственное чего нет в данном устройстве, это защиты от КЗ и переполюсовки. Позже возможно добавлю.

Подробная сборка отображена на видео:


Делаем своими руками зарядное устройство для автомобильного аккумулятора из БП компьютера и ноутбука

Аккумуляторная батарея — устройство, которое в ходе эксплуатации изнашивается и разряжается. Для заряда АКБ используется специальный прибор, который можно купить или сделать своими руками. О том, как соорудить зарядное устройство для автомобильного аккумулятора из БП компьютера и ноутбука, мы расскажем ниже.

Как сделать зарядку для АКБ из блока питания компьютера?

Готовимся к выполнению задачи

Зарядное устройство из БП ноутбука

Без переделки БП

С переделкой блока питания

Как правильно зарядить АКБ самодельной зарядкой?

Видео «Наглядная инструкция по сборке ЗУ из блока питания»

Комментарии и Отзывы

Как сделать зарядку для АКБ из блока питания компьютера?

Стоимость качественных зарядных приборов высокая. Поэтому многие автовладельцы решают переделать блок питания АТХ от стационарного ПК в ЗУ. Эта процедура не особо сложная, но прежде чем приступить к выполнению задачи и переделать блок питания на зарядку, которая сможет заряжать машинную АКБ, следует разобраться в требованиях, которые предъявляются к ЗУ. В частности, максимальный уровень напряжения, подводимый к АКБ, должен быть не более 14,4 вольта, чтобы не допустить быстрого износа батареи.

Пользователь Vetal в своем ролике показал, как можно переделать БП в зарядный прибор.

Готовимся к выполнению задачи

Чтобы соорудить самоделку ЗУ из компьютерного БП на 200W, 300W либо 350W (ШИМ 3528), потребуются следующие материалы и инструменты:

  • зажимы («крокодилы») для подключения к АКБ;
  • резисторный элемент на 2,7 кОм, а также на 1 кОм и 0,5 Вт;
  • паяльник с оловом и канифолью;
  • две отвертки (с крестовым и плоским наконечником);
  • резисторные элементы на 200 Ом и 2 Вт, а также на 68 Ом и 0,5 Вт;
  • обычное машинное реле на 12В;
  • два конденсаторных элемента на 25В;
  • три диода 1N4007 на 1 ампер;
  • светодиодный элемент (любого цвета, но лучше — зеленый);
  • силиконовый герметик;
  • вольтамперметр;
  • два гибких медных провода (1 метр каждый).

Также потребуется сам блок питания, который должен иметь следующие характеристики:

  • величина выходного напряжения — 12 вольт;
  • параметр номинального напряжения — 110/220 В;
  • величина мощности — 230 Вт;
  • параметр максимального тока — не выше 8 ампер.

Пошаговая инструкция

Процедура заряда машинной батареи производится под напряжением, величина которого от 13,9 до 14,4 вольта. Все стационарные блоки работают с напряжением 220 В, поэтому первостепенная задача — снизить рабочий параметр до 14,4 В. В основе зарядного девайса применяется микросхема TL494 (7500), при ее отсутствии можно использовать аналог. Микросхема нужна для генерирования сигналов и используется как драйвер транзисторного элемента, предназначенного для защиты прибора от повышенного тока. На дополнительной плате БП имеется еще одна схема — TL431 либо другая, аналогичная, предназначенная для регулировки параметра напряжения на выходе. Здесь же располагается резисторный элемент для настройки, с помощью которого можно отрегулировать величину выходного напряжения в узком интервале.

Подробно о том, как переделать компьютерный БП в зарядный прибор для АКБ машины, узнайте из ролика, опубликованного каналом «Паяльник TV».

Чтобы произвести своими руками переделку БП от компа в зарядку для авто, ознакомьтесь со схемой и следуйте инструкции:

  1. Для начала из компьютерного БП ATX надо демонтировать все лишние составляющие и элементы, после чего от него отпаиваются кабели. Воспользуйтесь паяльником, чтобы не повредить контакты. Надо удалить переключатель 220/110 вольт с кабелями, подключенными к нему. После удаления переключателя вы сможете предотвратить возможность перегорания БП, если случайно переключите его на 110 В.
  2. Затем от устройства отпаиваются и удаляются ненужные кабели. Уберите провод синего цвета, подключенный к конденсаторному элементу, воспользуйтесь паяльником. В некоторых БП к конденсатору подсоединяется два провода, удалить следует оба. Также на плате вы увидите пучок кабелей желтого цвета с выводом на 12 вольт, их должно быть четыре штуки, оставляйте все. Здесь же должно быть четыре провода черного цвета, их тоже надо оставить, поскольку это масса или заземление. Надо оставить еще один зеленый проводок, все остальные убираются.
  3. Обратите внимание на схему. По проводку желтого цвета вы сможете найти два конденсаторных элемента в электроцепи на 12 вольт. Их рабочий параметр напряжения составляет 16 В, поэтому сразу же удалите их путем выпаивания и установите два конденсатора на 25 В. Конденсаторные элементы вздуваются и становятся неработоспособными. Если даже они целые и с виду рабочие, рекомендуем их поменять.
  4. Теперь надо выполнить задачу, чтобы блок питания при каждом включении в бытовую сеть автоматически активировался. Суть в том, что когда БП установлен в компьютере, его активация осуществляется в случае замыкания определенных контактов на выходе. Надо удалить защиту от скачков напряжения. Этот элемент предназначен для автоматического отключения БП компьютера от бытовой сети в случае перенапряжения. Удалить его надо, потому что для оптимальной работы ПК требуется 12 вольт, а для функционирования зарядного устройства надо 14,4 В. Защита, установленная в блоке, воспримет 14,4 вольта как скачок напряжения, в результате чего ЗУ отключится и не сможет зарядить аккумулятор автомобиля.
  5. К оптрону на плате проходят два импульса — действия от защиты по скачкам напряжения отключения, а также активации и деактивации. В общей сложности на схеме имеется три оптрона. Благодаря этим элементам осуществляется связь между входной и выходной составляющими блока. Эти части называются высоковольтными и низковольтными. Для того чтобы защита не срабатывала при скачках напряжения, вам следует замкнуть контакты оптрона, это можно сделать при помощи перемычки, выполненной из припоя. Это действие позволит обеспечить бесперебойную работу БП, когда он будет включен в бытовую сеть.
  6. Теперь надо добиться того, чтобы величина исходящего напряжения составила 14,4 вольта. Для выполнения задачи потребуется плата TL431, установленная на дополнительной схеме. Благодаря этому компоненту выполняется настройка напряжения на всех каналах, идущих от устройства. Для увеличения рабочего параметра потребуется подстроечный резисторный элемент, расположенный на этой же схеме. С его помощью вы сможете увеличить напряжение до 13 вольт, но этого недостаточно для оптимальной работы зарядного устройства. Поэтому резистор, подключенный последовательно с подстроечным компонентом, подлежит замене. Его следует выпаять, а вместо него установить аналогичную деталь, сопротивление которой должно быть ниже 2,7 кОм. Это позволит увеличить диапазон регулировки выходного параметра и получить необходимые 14,4 вольта.
  7. Удалите транзисторный элемент, установленный рядом с платой TL431. Эта деталь может негативно повлиять на функциональность схемы. Транзистор будет мешать устройству поддерживать нужное напряжение на выходе. На фото ниже вы увидите элемент, он отмечен красным.
  8. Чтобы девайс для зарядки АКБ имел стабильное напряжение на выходе, надо повысить рабочий параметр нагрузки по каналу, где проходило напряжение в 12 вольт. Есть дополнительный канал на 5 вольт, но его использовать не надо. Для обеспечения нагрузки потребуется резисторный компонент, рабочая величина сопротивления которого составит 200 Ом, а мощность — 2 Вт. На дополнительный канал устанавливается деталь на 68 Ом, величина мощности которой составляет 0,5 Вт. Когда резисторные элементы будут припаяны, вы сможете отрегулировать величину напряжения на выходе до 14,4 вольта, при этом не потребуется нагрузка.
  9. Затем следует ограничить выходную величину силы тока. Этот параметр индивидуален для любого блока питания. У нас величина силы тока должна быть не более 8 ампер. Чтобы обеспечить это, потребуется повысить номинал резисторного компонента, установленного в первичной цепи обмотки, рядом с трансформаторным устройством. Последнее используется в качестве датчика, предназначенного для определения значения перегрузки. Для увеличения номинальной величины, резистор подлежит замене, вместо него монтируется компонент с сопротивлением на 0,47 Ом, а величина мощности составит 1 Вт. Осторожно выпаивается резистор, вместо него впаивается новый. После выполнения этой задачи деталь будет использоваться в качестве датчика, поэтому величина силы тока на выходе будет не более 10 ампер, даже если произойдет замыкание.
  10. Для обеспечения защиты машинной АКБ от неправильной полярности при подсоединении самодельного зарядного девайса в устройство устанавливается дополнительная схема. Речь идет о плате, которую вам предстоит сделать самостоятельно, поскольку в самом блоке ее нет. Для ее разработки потребуется подготовленное реле на 12 вольт, в котором должно быть четыре клеммы. Также понадобятся диодные компоненты, сила тока которых составит 1 ампер. Как вариант, можно использовать детали 1N4007. Схема должна быть дополнена светодиодом, который будет свидетельствовать о состоянии процесса зарядки. Если лампочка горит, то машинная АКБ подсоединена к зарядному устройству правильно. Помимо этих компонентов, потребуется резисторный элемент, рабочее сопротивление которого составит 1 кОм, а мощность — 0,5 Вт. Принцип действия схемы такой. АКБ подсоединяется через кабели к выходу самодельного зарядного устройства. Происходит активация реле благодаря энергии, которая осталась от аккумулятора. После срабатывания элемента начинается процесс зарядки от ЗУ, о чем свидетельствует активация диодной лампочки.
  11. При деактивации катушки в результате воздействия электродвижущей силы самоиндукции происходит скачок напряжения. Чтобы не допустить его негативного воздействия на работу зарядного девайса, в плату надо добавить два диодных компонента параллельным способом. Реле фиксируется на радиаторном устройстве БП при помощи герметика. Благодаря этому материалу можно обеспечить эластичность, а также невосприимчивость деталей к термическим нагрузкам. Речь идет о сжатии и расширении, о прогревании и охлаждении. Когда клей высохнет, к контактам реле надо подсоединить оставшиеся компоненты. Если герметик отсутствует, для фиксации подойдут обычные болты.
  12. На последнем этапе к блоку подключаются провода с «крокодилами». Лучше применять кабели разных цветов, к примеру, черного и красного или красного и синего. Это позволит не допустить спутывания полярности. Длина провода будет не меньше одного метра, а их сечение должно составить 2,5 мм2. К концам кабелей подключаются зажимы, предназначенные для фиксации на клеммах аккумулятора. Чтобы зафиксировать провода на корпусе самодельного зарядного девайса, в радиаторном устройстве просверливаются два отверстия соответствующего диаметра. Через получившиеся отверстия продеваются две нейлоновые стяжки, с помощью которых кабели будут фиксироваться. В зарядное устройство можно вмонтировать амперметр, он позволит контролировать величину силы тока. Подключение прибора осуществляется параллельным образом к цепи БП.
  13. Остается протестировать работоспособность собранного своими руками ЗУ.

Зарядное устройство из БП ноутбука

Можно соорудить зарядный девайс из блока питания ноутбука.

Напрямую подключать БП к аккумуляторным клеммам нельзя.

Величина выходного напряжения варьируется в районе 19 вольт, а значение силы тока составляет около 6 ампер. Этих параметров достаточно, чтобы обеспечить заряд аккумуляторной батареи, но напряжение слишком высокое. Решить проблему можно двумя способами.

Без переделки БП

Потребуется последовательным образом с аккумулятором машины подключить так называемый балласт в виде мощной лампы от оптики. Источник освещения будет использоваться в качестве ограничителя тока. Простой и доступный вариант. К плюсовому выходу блока питания ноутбука подключается один контакт лампы, а второй ее контакт подсоединяется к плюсу аккумуляторной батареи. Минус от блока питания подключается напрямую к отрицательной клемме аккумулятора по проводу. После этого БП можно включать в бытовую сеть. Способ очень простой, но есть вероятность выхода из строя источника освещения. Это приведет к неработоспособности как аккумулятора, так и блока.

Канал It’s simple опубликовал ролик, в котором наглядно показал, как выполнить подзарядку машинного аккумулятора с помощью обычного БП от ноутбука и лампочки.

С переделкой блока питания

Потребуется понизить параметр напряжения БП, чтобы напряжение на выходе составляло около 14-14,5 В.

Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall:

  1. Сначала следует разобрать корпус блока питания. При разборке не повредите его, поскольку он будет использоваться для дальнейшей эксплуатации. Плату, которая расположена внутри, можно подключить к вольтметру, чтобы точно узнать, какое ее рабочее напряжение. В нашем случае оно составляет 19,2 вольта. Используется плата, построенная на микросхемах TEA1751+TEA1761.
  2. Выполняется задача по снижению величины напряжения. Для этого потребуется найти резисторный элемент, расположенный на выходе. Нужна деталь, соединяющая шестой контакт схемы ТЕА1761 с положительным выводом блока питания. Этот резисторный элемент следует выпаять при помощи паяльника и произвести замер его сопротивления. Рабочий параметр составляет 18 кОм.
  3. Вместо демонтированного элемента устанавливается подстроечный резисторный компонент на 22 кОм, но перед впаиванием его следует настроить на 18 кОм. Аккуратно запаяйте деталь, чтобы не повредить другие элементы схемы.
  4. Постепенно понижая величину сопротивления, надо добиться того, чтобы на выходе параметр напряжения составил 14-14,5 вольт.
  5. Когда вы получите напряжение оптимальное для зарядки автомобильного аккумулятора, запаянный резистор можно отпаять. Производится замер его параметра сопротивления, в нашем случае он составляет 12, 37 кОм. По этой величине или близкой к ней подбирается постоянный резистор. Мы используем два резистора на 10 кОм и 2,6 кОм. Концы обеих деталей устанавливаются в термокембрик, после чего происходит их впаивание в плату.
  6. Полученную в итоге схему рекомендуем протестировать перед сборкой устройства. Параметр напряжения на выходе составит 14,25 вольт, этого достаточно для заряда батарейки.
  7. Приступаем к сборке девайса. Подключите провода с зажимами. Перед их впаиванием убедитесь в том, что на выходе соблюдается полярность. В зависимости от блока ноутбука, минусовой контакт может быть выполнен в виде центрального провода, а положительный — в виде оплетки.
  8. В итоге вы получаете девайс, который может правильно заряжать АКБ. Величина тока в ходе заряда варьируется в районе 2-3 ампер. Если этот параметр падает до 0,2-0,5 ампер, то процедуру подзарядки можно считать завершенной. Для более удобного использования ЗУ оборудуют амперметром, зафиксировав его на корпусе. Можно использовать светодиодную лампу, которая будет говорить автовладельцу о завершении процесса зарядки.

Канал kt819a предоставил ролик, в котором подробно рассмотрено зарядное устройство, сделанное из БП ноутбука.

Как правильно зарядить АКБ самодельной зарядкой?

Чтобы не допустить быстрого выхода из строя АКБ, надо учитывать определенные нюансы по правильной подзарядке.

  1. Сначала отключите клеммы батареи от зажимов. Открутите болты, которые крепят фиксирующую планку аккумулятора.
  2. Демонтируйте устройство из посадочного места, отнесите домой или в гараж.
  3. Прочистите корпус от загрязнений. Обратите внимание на сами клеммы. Если на них есть окисления, их следует очистить. Используйте зубную или строительную щетку, подойдет наждачная бумага мелкой зернистости. Главное — не счистить рабочий налет.
  4. Если аккумулятор обслуживаемый, откройте все его банки и проверьте в них уровень электролита. Рабочий раствор должен покрывать все секции. Если это не так, то заряд батареи может привести к быстрому испарению кипящей жидкости, что отразится на функциональности батареи и ее исправности в целом. При необходимости добавьте в банки дистиллированную воду. Визуально осмотрите корпус батареи на предмет дефектов, иногда утечка жидкости связана с наличием трещин. Если повреждения серьезные, то АКБ подлежит замене.
  5. Подключите зажимы самодельного ЗУ к клеммам АКБ, соблюдая полярность. После этого девайс можно подключать к бытовой сети. Пробки на банках при этом откручивать не надо.
  6. Когда процедура заряда будет завершена, проверьте уровень электролита и если все нормально, то закрутите банки. Установите батарею в автомобиль и убедитесь, что она в рабочем состоянии.

Заключение

Основным плюсом девайса считается то, что автомобильная батарея не сможет перезарядиться в процессе подзарядки. Если вы забудете отключить АКБ от зарядного устройства, это не повлияет на ее ресурс эксплуатации и не приведет к быстрому износу. Если вы не оборудуете ЗУ светодиодным индикатором, то не сможете понять, зарядился ли аккумулятор или нет. Как вариант, можно приблизительно рассчитать время подзарядки, используя показания, которые выдает амперметр, подключенный к ЗУ. Рассчитать можно по формуле: величина силы тока умножается на время зарядки в часах. На практике на реализацию задачи по подзарядке требуется около суток при условии, что емкость батареи составляет 55 А/ч. Если вы хотите наглядно видеть уровень подзаряда, то в девайс можно добавить стрелочные или цифровые индикаторы.

Видео «Наглядная инструкция по сборке ЗУ из блока питания»

Канал «Сделай так» предоставил ролик, в котором подробно описан процесс создания и сборки зарядного девайса для машинного аккумулятора из блока питания.

Ссылка на основную публикацию